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Goal for Summary 
This report provides a comprehensive summary of the recent developments, exploratory 

data analysis, and proposed next steps for the BioSound-MBON project. After completing the 

exploratory study and sharing the initial results, the team conducted a deeper analysis to 

evaluate trends and identify patterns of commonality across all datasets. The primary focus 

of this analysis was to assess acoustic indices, analyze diel trends, evaluate water class 

relationships, and apply multivariate analyses to gain valuable insights into similarities and 

differences of marine soundscapes. 

 

Recent Developments to the BioSound-MBON Dashboard 
The BioSound-MBON Dashboard now includes enhanced functionality, allowing users to 

download plots and data directly from the interface (Figure 1). This improvement supports 

greater accessibility and facilitates deeper analysis by stakeholders and researchers. The 

dashboard can be accessed at the following link: BioSound Dashboard 

 

 
Figure 1: Download options for plots and select data available on all data explorer tabs 

 

https://ocean-science-analytics.shinyapps.io/biosound-mbon/
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Evaluating Exploratory Data 

The exploratory data analysis aimed to identify trends and interpret relationships within the 

collected datasets. Key analytical components included: 

• Diel Trends: Analyzing acoustic indices to uncover temporal patterns across various 

sites. 

• Water Class Relationships: Evaluating correlations between water class data and 

acoustic indices. 

• Recording Duration Effects: Determining how different recording durations impact 

the calculation of acoustic indices. 

• Multivariate Analysis: Utilizing Principal Component Analysis (PCA) and K-Means 

clustering to explore complex patterns within the data. 

 

Diel & Diurnal Trends Analysis 
We conducted a qualitative evaluation of trends and differences across all datasets by 

reviewing heatmaps generated by normalizing the value of each acoustic index. These 

heatmaps were produced for either the full bandwidth or a reduced 16 kHz sampling rate 

and plotted by the hour of the day. Our objective was to uncover diel (24-hour cycle) and 

diurnal (daytime-focused) trends by visualizing how acoustic indices fluctuated throughout 

the day. Among the three available plots in the BioSound-MBON analytical tool, Plot 3 

proved to be the most impactful. This plot displayed the range of normalized, user-selected 

index values by date on the x-axis and hour of the day on the y-axis, providing a clear 

temporal pattern for the month of February. We selected February 2019 as the common 

month for analysis to enable consistent comparisons across most datasets, with the 

exception of Key West, where data was collected in February 2020. 

 

Key trends observed in our analysis included: 

 

Dataset Type of Marine Habitat Depth 

(m) 

Pattern Observation 

Biscayne Bay, FL Mangrove 4.3 Notable Patterns 

Chukchi Sea, Hanna Shoal Offshore 30 Few or Unobservable Patterns 

Gray’s Reef, GA Offshore 16 Notable Patterns 

Key West, FL Coral Reef 23 Notable Patterns 

May River, SC Estuary 4.5 Notable Patterns 

Olowalu (Maui, HI) Island/Nearshore 59.7 Few or Unobservable Patterns 

ONC-MEF Offshore 2,189 Few or Unobservable Patterns 

OOI-HYDBBA106 Shelf 80 Few or Unobservable Patterns 
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Observed Patterns 

Our analysis of diel and diurnal trends across multiple datasets revealed intriguing 

patterns that appear to correlate with tidal cycles. For several datasets and across 

various acoustic indices, a notable pattern emerged that aligns with tidal fluctuations, 

characterized by larger index measurements approximately every 6 to 7 hours (Figure 2). 

This cyclic pattern exhibited a consistent shift of about one hour forward each day 

throughout February, suggesting a potential link to tidal rhythms. The Biscayne Bay (a 

mangrove ecosystem) and May River (an estuary) datasets demonstrated this trend most 

prominently across multiple indices. Both sites share similar shallow depths of 

approximately 4.5 meters, which may amplify the influence of tidal movements on 

acoustic measurements. 

 

In addition to tidal-associated patterns, we identified a distinct diurnal trend across 

several datasets (Figure 3). This pattern manifested as either lower acoustic index 

values during daylight hours with higher values in the evening and nighttime, or the 

inverse, with heightened activity during the day. This diurnal fluctuation was consistently 

observed across multiple indices and appeared most frequently in the Gray's Reef and 

Key West datasets. Unlike the shallow environments of Biscayne Bay and May River, 

these sites feature recorder depths of 16 meters and 23 meters, respectively. The 

increased depth at these locations might contribute to the observed light-driven acoustic 

patterns, possibly influenced by the behaviors of marine organisms, variations in abiotic 

noise sources, or changes in water column properties throughout the day. 

 
Figure 2: Example of apparent tidal pattern represented in multiple indices. This example from 

Biscayne Bay in February is the ACTspMean (Temporal Index), 32 kHz sampling rate. 
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Figure 3: Diurnal trends observed in multiple datasets and indices. This example includes A) 

Gray’s Reef, BGNf index (Amplitude Index) calculated from 48 kHz data and B) Key West, BGNf 

index (Amplitude Index) calculated from 48 kHz data. 

 

We observed that the patterns present in the native bandwidth of each acoustic index 

were often mirrored in the low sampling rate examples, albeit with some variations in the 

intensity of index values (Figure 4). This consistency in patterns across both the full 

bandwidth and the reduced 16 kHz sampling rate suggests that much of the influence 

on these acoustic indices may be concentrated in the lower frequency ranges. Lower 

frequencies often capture sounds from a broad spectrum of sources, including 

environmental noise, certain marine mammal vocalizations, and anthropogenic 

activities, which might drive these observed trends. The alignment of patterns across 

sampling rates reinforces the potential utility of lower frequency monitoring for capturing 

meaningful ecological and environmental signals. 

 

 
Figure 4: Similar patterns exhibited in full bandwidth and decimated data. This example includes 

A) Gray’s Reef, BGNf index (Amplitude Index) calculated from 48 kHz data and B) Key West, BGNf 

index (Amplitude Index) calculated from 16 kHz data. 
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Recording Duration Summary 

To assess the effect of recording duration on acoustic index measurements, we conducted a 

statistical evaluation using two datasets with varying recording intervals. The datasets 

included Olowalu (Maui) with recordings of 300 seconds and 150 seconds, and Key West 

with recordings of 30 seconds and 10 seconds. Since the acoustic index measurements 

were not normally distributed, we employed a non-parametric Mann-Whitney U test to 

compare each recording interval across all acoustic indices. Our analysis revealed that most 

indices exhibited statistically significant differences in measurements between recording 

durations for both datasets. 

 

Table 1 summarizes the p-value by acoustic index where at least one non-significant result 

was observed. Indices highlighted in blue indicate non-significant results for both datasets, 

while all other rows demonstrate a significant difference for at least one of the two datasets. 

Our  results showed that a significant difference was less frequently encountered in the 

longer 300-second versus 150-second duration comparison compared to the shorter 30-

second versus 10-second intervals, albeit only for nine indices. This finding suggests that 

longer recording durations may provide more stable and consistent acoustic measurements, 

potentially reducing variability and enhancing interpretability. 

 

Table 1: Comparison of statistical results (p-values) for Mann-Whitney U test comparisons to 300 

and 150 seconds (Olowalu, Maui) and 30 and 10 seconds (Key West) datasets.  

 

 

Olowalu 

(Maui)

Key West, 

FL

BGNf 0.585 0.024

BGNt 0.902 0.806

BI 0.062 0.003

EPS_SKEW 0.162 <0.001

EVNtCount 0.311 0.828

H_gamma 0.623 <0.001

H_pairedShannon 0.097 <0.001

Hf 0.1 <0.001

MEANt <0.001 0.466

MED 0.902 0.806

NDSI 0.062 0.003

rBA 0.062 0.003

TFSD 0.859 0.013

ZCR 0.827 0.001
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Water Class Data Analysis 

The exploratory study generated a series of correlation matrices that examined the 

relationship between acoustic indices and environmental data from the Seascapes 

designation of water classes. These water classes are defined using remotely sensed ocean 

properties, including variables such as sea surface temperature, chlorophyll concentration, 

salinity, and primary productivity, among others. Figure 5 presents an example of correlation 

matrices for each study region, highlighting the interaction between acoustic measurements 

and environmental parameters. To ensure robust analysis, we calculated the water class cell 

counts for all regions to identify those water classes with sufficient representation in the 

dataset (Figure 6). This step was critical in avoiding skewed interpretations based on 

underrepresented classes. We then extracted the Pearson correlation coefficient values 

from each dataset to detect persistent patterns of correlation, focusing on indices that 

exhibited consistently high (e.g., >0.6) or low (e.g., < -0.6) values across datasets. A greater 

magnitude of either positive or negative correlation values would indicate a stronger 

relationship between the acoustic indices and specific environmental variables.  

 

 
 

Figure 5: Series of correlation matrices from the exploratory study for the set of complexity indices, 

with water class on the x-axis and complexity index on the y-axis. Data from these plots were 

extracted for subsequent analysis.  
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Figure 6: Water  class cell count inclusive of all datasets. Water class number is indicated on the x-

axis, while counts of 5.6 km by 5.6 km cells is along the y-axis.  

 

We examined categories of acoustic indices to assess whether any consistent trends 

emerged by region, particularly focusing on whether similar habitats exhibited comparable 

correlations with water classes. However, our results did not reveal a clear pattern of 

consistency across similar environments. For instance, given the similarity in diel patterns 

between Biscayne Bay and May River, we initially hypothesized that these regions would 

exhibit comparable correlations with Seascapes water classes. Contrary to our expectations, 

Table 2 demonstrates that each region displayed distinctly different correlation profiles. 

Biscayne Bay showed strong positive correlations among many of the complexity indices, 

whereas May River presented variable, low to moderate correlations, suggesting that even 

within seemingly similar shallow water habitats, underlying environmental or ecological 

differences influence acoustic index relationships differently. 

 

To explore this further, we shifted our focus to per-index correlation measures per water 

class, aiming to determine whether at least specific acoustic index measurements 

maintained consistent correlations within particular water classes. This analysis involved 

plotting the distribution of mean index values, calculated across eight-day intervals to align 

with the temporal resolution of the remotely sensed water class data, and comparing these 

to the observed correlation coefficients. For example, Water Class 12, which comprises a 

substantial portion of the ONC-MEF and OOI-HYDBBA106 datasets (Figure 7), exhibited 

opposite extreme correlation coefficients between these datasets. We visualized the mean 

index values for the SNRt, HpairedShannon, and EVNtMean indices to interpret these 
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trends. Our analysis revealed that increased index values were associated with lower 

extreme correlation values for both EVNtMean and SNRt (Figure 8). However, this pattern 

did not hold for HpairedShannon, which showed reduced index measures at the ONC-MEP 

site, despite a similarly strong negative correlation coefficient. Importantly, while specific 

trends within single water classes were occasionally evident, these associations did not 

translate consistently across other water classes. For instance, in Water Class 15 (Figure 9), 

high values of HpairedShannon did not correlate with a drastic decrease in correlation 

coefficients, demonstrating the complex and potentially site-specific nature of these 

relationships.  

 

 

 

Table 2: Pearson correlation coefficient values for Biscayne Bay and May River for water class 15. 

Extreme green cells indicates large positive correlation, and a large negative value indicates a strong 

negative correlation.  

 

 
 

 

Index

Biscayne Bay 
Correlation 

Coeff

May River 
Correlation 

Coeff
ACI 0.406 0.108
ACTspCount 0.972 0.340
ACTspFract 0.972 0.340
ACTspMean 0.970 -0.158
AGI 0.896 0.505
EAS 0.833 -0.312
ECU 0.744 -0.226
ECV 0.669 -0.308
ENRf -0.130 0.339
EVNspCount 0.958 0.377
EVNspFract 0.911 0.393
EVNspMean 0.476 0.151
RAOQ -0.420 -0.112
ROIcover -0.253 -0.350
ROItotal -0.933 -0.337
ROU 0.386 0.385
ZCR 0.333 0.431
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Figure 7: Composition of water class data for the period of March through April 2019 to give context 

in the representation of water classes in a region. Only February is incorporated in subsequent 

analyses. Water class 12 is only found in the OOI-HYDBBA106 and ONC-MEF datasets.  

 

 
 

Figure 8: Plots of the distribution of mean index values associated with water class 12. Only datasets 

with profiles consistent of 5 or more cells of the specified water class are reported. Pearson 

correlation coefficients are reported for comparison to index measurements. Water class 12 is only 

represented in ONC-MEF and OOI-HYDBBA106. This figure displays measurements for EVNtMean (A), 

H_pairedShannon (B), and SNRt (C).  
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Figure 9: Distribution of mean H_pairedShannon measurements by dataset and associated 

correlation coefficient for water class 15. No relationship between correlation coefficients and 

measurements is noted across sites.  

 

Multivariate Analysis 

As a cursory investigation into the potential use of a combined index approach for evaluating 

the unique natures of these datasets, we applied two advanced analytical techniques to 

explore how a multi-index framework might enhance our understanding of marine 

soundscapes. This preliminary analysis aimed to determine whether combining multiple 

acoustic indices could reveal latent patterns and relationships not evident when indices are 

considered in isolation. The analytical methods employed included: 

 

• Principal Component Analysis (PCA): Performed on 10 select presentative acoustic 

indices from each index category (e.g., per site to reduce dimensionality and highlight 

key patterns. 

• K-Means Clustering: Classified sites into 8 groups based on their acoustic profiles, 

providing insights into site relationships and ecological significance. 

 

We explored the natural structure of the acoustic indices by combining two complementary 

analytical techniques. We applied Principal Component Analysis (PCA) to the normalized 

indices to show the multidimensional relationships could be mapped onto two principal 

dimensions (Figure 10). The dimensional reduction allowed us to identify the main gradients 

of variation. Each feature’s contribution to these principal components was carefully 



 

 
 

11 

measured through loading coefficients, revealing which variables were most influential. In 

parallel, we introduced k-means clustering (k=8) to identify whether the natural groupings 

that emerge coincided with the geographical origins of the measured indices. 

 

 
 

Figure 10: Principal component contributions of acoustic index to PC1 and PC2. 

 

Our analysis revealed that k-means clustering patterns did not significantly correlate with 

geographical locations (Figure 11A). Interestingly, however, location groupings formed 

distinct clusters within the principal component space (Figure 11B). We observed that 

geographically proximate regions often displayed similar acoustic profiles, suggesting a 

spatial gradient in acoustic properties. This spatial coherence provides promising evidence 

that acoustic indices may effectively characterize different soundscapes, potentially offering 

a quantitative method for distinguishing between acoustic environments. 
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Figure 11: PCA plots by k-means clusters (A) and location clusters (B). 

 

Multivariate Analysis Visualization 

Visual representations of the Principal Component Analysis (PCA) and K-Means clustering 

results were generated to support the interpretation of clustering and site associations. 

These visualizations allow for an interactive exploration of the multivariate analysis, enabling 

users to compare K-Means clusters and site-specific clusters for the set of 10 indices 

utilized in the cursory review of multivariate methods. To provide an interactive perspective, 

these visualizations are available online at: Exploring BioSound Data. 

 

Next Steps 
An initial next step in this effort was the submission of a small proposal effort to the 

WILDLABS 2025 awards. To further enhance the analysis and understanding of acoustic 

indices, we proposed to evaluate the existing data using multivariate methods, including 

principal component analysis (PCA) and k-means clustering, and Uniform Manifold 

Approximation and Projection (UMAP) unsupervised learning methods. Indices will be 

evaluated collectively and in subsets based on their categorization (e.g., temporal indices, 

spectral indices) and collectively. These methods will allow us to derive quantitative pattern 

outputs that highlight similarities and differences in acoustic data across various 

underwater environments. Specifically, we will assess how factors such as recording 

instrument depth, diel and diurnal differences, and site-specific acoustic indices contribute 

to the observed variability. Additionally, as a result of subsequent conversations from the 

February 18th meeting, we will explore the comparison of these combined metrics in 

reference to a processed, longer-term dataset from May River to further understand the 

relationship between acoustic indices and the soundscape. 

 

https://observablehq.com/@michw-workspace/exploring-biosound-data

